Post - collapse dynamics of self - gravitating Brownian particles in D dimensions
نویسنده
چکیده
We address the post-collapse dynamics of a self-gravitating gas of Brownian particles in D dimensions, in both canonical and microcanonical ensembles. In the canonical ensemble, the post-collapse evolution is marked by the formation of a Dirac peak with increasing mass. The density profile outside the peak evolves self-similarly with decreasing central density and increasing core radius. In the microcanonical ensemble, the post-collapse regime is marked by the formation of a “binary”-like structure surrounded by an almost uniform halo with high temperature. These results are consistent with thermodynamical predictions.
منابع مشابه
Postcollapse dynamics of self-gravitating Brownian particles and bacterial populations.
We address the postcollapse dynamics of a self-gravitating gas of Brownian particles in D dimensions in both canonical and microcanonical ensembles. In the canonical ensemble, the postcollapse evolution is marked by the formation of a Dirac peak with increasing mass. The density profile outside the peak evolves self-similarly with decreasing central density and increasing core radius. In the mi...
متن کاملGravitational Collapse of a Brownian Gas
We investigate a model describing the dynamics of a gas of self-gravitating Brownian particles. This model can also have applications for the chemotaxis of bacterial populations. We focus here on the collapse phase obtained at sufficiently low temperature/energy and on the post-collapse regime following the singular time where the central density diverges. Several analytical results are illustr...
متن کاملOn the Analogy between Self-gravitating Brownian Particles and Bacterial Populations
We develop the analogy between self-gravitating Brownian particles and bacterial populations. In the high friction limit, the self-gravitating Brownian gas is described by the Smoluchowski-Poisson system. These equations can develop a self-similar collapse leading to a finite time singularity. Coincidentally, the Smoluchowski-Poisson system corresponds to a simplified version of the Keller-Sege...
متن کاملExact diffusion coefficient of self-gravitating Brownian particles in two dimensions
Abstract. We derive the exact expression of the diffusion coefficient of a self-gravitating Brownian gas in two dimensions. We show the existence of a critical temperature Tc at which the diffusion coefficient vanishes. For T < Tc the diffusion coefficient is negative and the gas undergoes gravitational collapse. This leads to the formation of a Dirac peak concentrating the whole mass in a fini...
متن کاملExact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature.
We provide an exact analytical solution of the collapse dynamics of self-gravitating Brownian particles and bacterial populations at zero temperature. These systems are described by the Smoluchowski-Poisson system or Keller-Segel model in which the diffusion term is neglected. As a result, the dynamics is purely deterministic. A cold system undergoes a gravitational collapse, leading to a finit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008